最適レバレッジ

レバレッジをどのくらいにすれば利益を最大化できるかということを考えてみる。

レバレッジは高いほどいいのか

FXはレバレッジを使えば少ない資金で大きな利益を挙げられる、という宣伝文句をよく見かける。だが正確には、大きな損失を蒙ることもある、と付け加えるべきだ。宣伝する側は都合のいい面しか強調しないから困ったものである。

「トータルで勝てる人なら大きな損失を大きな利益でカバーして余りあるから、やはりレバレッジは高いほどいいのではないか」と考える人もいるだろう。果たしてそうなのか、これから検討してみる。

レバレッジ1倍で運用した場合の資産曲線

ここに1年当たり100トレード、1トレード当たりの期待利益が0.1%、リスクが0.5%の戦略があるとする。単純化して考えると、1年当たりの期待利益は0.1% * 100 = 10.0%、リスクは√Tルールに基づけば0.5% * sqrt(100) = 5.0%となる。したがって、シャープレシオは10.0 / 5.0 = 2.0となり、戦略としてはまずまずである。

この戦略に基づいて100回トレードを行うシミュレーションをやってみる。乱数を使っているので、結果は毎回違う。シミュレーション結果の利益、リスクも必ずしも指定した数値にはならないことを予め断っておく。

それはさて、先ずはレバレッジ1倍で運用した場合の資産曲線を見てみる。

In [1]:
import matplotlib.pyplot as plt
import numpy as np

trades = 100
ret = np.random.normal(0.001, 0.005, trades)
equity_curve = np.zeros(trades)
for i in range(trades):
    if i == 0:
        equity_curve[i] = 1.0 * (1.0 + ret[i])
    else:
        equity_curve[i] = equity_curve[i-1] * (1.0 + ret[i])
    if equity_curve[i] < 0.0:
        equity_curve[i] = 0.0
mean = np.mean(ret)
std = np.std(ret)
kelly = mean / (std * std)
ax=plt.subplot()
plt.plot(equity_curve)
plt.xlabel('Trades')
plt.ylabel('Equity curve')
plt.text(0.05, 0.9, 'Kelly = ' + str(kelly), transform=ax.transAxes)
plt.savefig('optimal_leverage1.png', dpi=150)
plt.show()


初期資産は1.0から開始し、そこから何%増減したかを見る。グラフによると最終資産はおよそ1.1となっているので、10%の利益であったことが分かる。

最適レバレッジの計算

グラフに「Kelly = 41.2146523106」とあるが、これはケリー基準による最適レバレッジである。

ケリー基準の計算には本来の計算式と簡易式とがあるが、ここでは

最適レバレッジ = 期待利益 / (リスク * リスク)

という簡易式を用いる。

期待利益が0.1%、リスクが0.5%である場合は

0.001 / (0.005 * 0.005) = 40.0

でレバレッジ40倍が最適レバレッジとなる。

レバレッジ別の最終資産

最後にレバレッジ別の最終資産を見てみる。

In [2]:
n = 100
result = np.zeros(n)
for j in range(n):
    leverage = j
    for i in range(trades):
        if i == 0:
            equity_curve[i] = 1.0 * (1.0 + ret[i] * leverage)
        else:
            equity_curve[i] = equity_curve[i-1] * (1.0 + ret[i] * leverage)
        if equity_curve[i] < 0.0:
            equity_curve[i] = 0.0
        result[j] = equity_curve[trades-1]
plt.plot(result)
plt.axhline(y=1.0, color='red')
plt.axvline(x=kelly, color='black', linestyle=':')
plt.xlabel('Leverage')
plt.ylabel('Balance')
plt.savefig('optimal_leverage2.png', dpi=150)
plt.show()


縦の点線はケリー基準による最適レバレッジの位置である。その付近で利益が最大化していることが分かる。必ずしも一致しないのはこれが簡易式だからである。

利益を最大化した場合、最終資産は約9.0である。800%もの利益があったことになる。レバレッジ1倍のときは10%程度であったのだから、レバレッジの力は偉大である。

だが、最適レバレッジを超えると利益が減っていくことが分かる。赤の水平線は初期資産である1.0の水準だが、レバレッジ60倍を超えた当たりで最終資産が水平線を下回っている。期待利益がプラスであるにもかかわらず、損失を招いているのである。

そしてレバレッジ80倍手前で最終資産は0になっている。つまり破産である。

最適レバレッジならよいのか

検証結果によると、例え利益の期待値がプラスであってもレバレッジは高いほどよいとは言えないことになる。トレードはリスク管理だけで利益を挙げられるわけではない。だが、それをしっかりやっていないと、トータルで勝てるはずのトレードでも損失を蒙り、さらには破産するという結果になる。

では、最適レバレッジを計算してそれを適用すればよいのだろうか。シミュレーションでは期待利益はプラスに設定してあり、勝ちは約束されている。それでも乱数を使っていることから生じるぶれがある。まして、実際のトレードで勝ちが約束されているなどということはありえない。

したがって、実際のトレードはシミュレーションよりはるかに不確実性が高い。算出した最適レバレッジもはるかに大きなぶれがあることを想定しなければならない。

適用するレバレッジが最適レバレッジより小さい場合、利益の最大化はできないが、期待利益がプラスである限り、資産を増やすことはできる。だが、適用するレバレッジが最適レバレッジより大きい場合、利益の最大化ができないばかりか、期待利益がプラスであったとしても資産を減らしたり、最悪、破産したりするのである。

だとすれば、実際に使用するレバレッジは最適レバレッジより小さくしたほうが安全である。「最適レバレッジ」とは言っても、むしろこれは上限と考えるべきなのだ。慣習的には「ハーフケリー」などと言って、算出された最適レバレッジの2分の1を適用するということも行われている。

複利運用でない場合

ケリー基準というのは実は複利運用が前提となっている。複利運用でない場合、レバレッジが高いからといって必ずしも損失や破産をもたらさない。しかし、複利にしなければ資産は算術的にしか増えないのである。

資産を低レバレッジで幾何学的に増やすのと高レバレッジで算術的に増やすのとではどちらがよいか。トレード期間が長くなれば、いずれ「低レベレッジ + 幾何学的」が「高レバレッジ + 算術的」を上回るだろう。だが、この問題については私の知識が不足しているので、これ以上は述べない。

(2017/03/10更新)